
VIRUS BULLETIN www.virusbtn.com

4 JULY 2005

GOT [MAC]ROOT?
Peter Ferrie
Symantec Security Response, USA

There is a long history of rootkits on Unix-based platforms,
such as Unix itself, Linux, BSD, etc. No doubt to the surprise
of some in the Macintosh community, the MacOS X platform
now has one too. We call it OSX/Weapox. It is written by
someone who calls himself ‘nemo’.

Weapox is based very heavily on the AdoreBSD rootkit. In
fact, some of the original Adore code remains in the
Weapox binaries, although it is never called. Even the
function names have been retained (since the MacOS X
kernel-extension file format is an object file, a lot of textual
information is visible, including the function names). Since
the MacOS X platform essentially has BSD at its heart, it
was not a surprise that a BSD rootkit was used as the basis
for a MacOS X rootkit. Weapox did not load on a test
machine running Jaguar (MacOS 10.2), but it did load on a
test machine running Panther (MacOS 10.3).

Whenever the rootkit is executed, it begins by hooking the
functions ‘setuid’, ‘kill’, ‘write’ and ‘chmod’. The rootkit
also contains hook functions for ‘writev’, and ‘getdirentries’,
but since those functions are never hooked, the hook functions
are never called. In any case, those hook functions seem to
be incomplete, even though they are fully functional in the
AdoreBSD rootkit. Perhaps MacOS X is sufficiently
different that the Weapox author couldn’t get them to work
properly. Other functions that are not called are
‘activate_cloaking’ and ‘hide_process’. The latter is another
remnant from the original AdoreBSD rootkit.

EATS, ROOTS AND LEAVES
The hooked ‘setuid’ function checks if the UID is set to a
particular value (1337 – ‘leet’). If it is, then the function sets
the UID to 0 (root) instead. Otherwise, the function calls the
original handler. (Leetspeak [or 13375p34k] is a cryptic
form of transliteration adopted by some hackers and gamers
as a way of excluding the non-leet from their conversations
on open channels. 1337 is devolved from the word ‘elite’
via ‘lite’ -> ‘leet’ -> ‘1337’.)

KILL OR BE KILLED
Despite its name, not only can the ‘kill’ function terminate a
process, but it can also signal a process. If the hooked ‘kill’
function is used to signal a process, then the function checks
if the signal is one of two particular values. If the value is
1337 (‘leet’ again), then the function escalates that process’s
privileges to level 0, effectively giving it full control over

VIRUS ANALYSIS

VIRUS BULLETIN www.virusbtn.com

5JULY 2005

the system. If the value is 9047 (which, in a less common
use of 1337, means ‘PORT’), then the passed PID is
interpreted as a port number, and the function prepends that
port to a list of ports to hide. That list is used by the hooked
‘write’ function (see below). If the signal is neither of these
special values, then the hooked ‘kill’ function calls the
original handler.

The hooked ‘chmod’ function checks whether the mode
to set is a particular value (378, a value that would not
normally be allowed). If it is 378, the passed path is
interpreted as a logged-on username, and the function
prepends that username to a list of usernames to hide. This
list is used by the hooked ‘write’ function. Otherwise, the
function calls the original handler.

This signalling method is interesting in that the hooked
functions are in no way related to the information that they
hide – but perhaps that’s the idea.

WRITE YOUR OWN TICKET

The hooked ‘write’ function checks the name of the
application requesting the write. If the requesting
application is ‘netstat’, and if any entry in the hidden port
list appears anywhere within the text to be printed, then the
entire line is discarded instead of being printed. If the
requesting application is ‘w’ or ‘who’, and if any entry in
the hidden user list appears anywhere within the text to be
printed, the entire line is discarded. This is a very simple
method of stealth, which can be defeated, for example, by
renaming the application, but it works well enough against
the average user. It is also the method that AdoreBSD used.

The hooked ‘writev’ function checks if the text ‘promiscuous
mode’ appears anywhere within the text to be printed. If it
does, then the entire line is discarded instead of being
printed. Otherwise, the function calls the original handler. It
is not clear why this text would be ignored, unless perhaps it
would otherwise appear in a network security log. In the
AdoreBSD rootkit, the function is used as an ‘I’m here’
routine – literally, if the hooked ‘writev’ function is called
and if the text ‘promiscuous mode’ appears anywhere within
the text to be printed, AdoreBSD prints ‘I’m here’.
Otherwise, the function calls the original handler.

The hooked ‘getdirentries’ function contains several bugs,
one of which results in an infinite loop, but that doesn’t
matter since the function is never called. The function is
intended to check for a particular directory name within a
directory structure, presumably to avoid it being printed.
However, the directory name is never copied to the buffer to
compare. Even if the name matched, the function simply
prints ‘MATCH!’ and does nothing further with it.
Additionally, the original function is not called afterwards.

The AdoreBSD code, for comparison, calls the original
function to retrieve the real list of directory entries, then
removes the directory to hide from that list, before returning
the list to the caller.

The ‘active_cloaking’ function is intended to remove the
current module from the kernel module list. This list is used
by, for example, kextstat. It is not clear, though, if the
removal from the list results in the process no longer being
executed. Perhaps that is why it is not called. The
‘hide_process’ function doesn’t hide anything at all. It
simply searches for the requested PID and returns success
or failure. The rest of the code that was present in the
corresponding AdoreBSD rootkit function has been
removed from this function.

OPEN SESAME
A ‘rootkit’ called SH/Renepo (‘opener’ spelled backwards)
preceded Weapox by a few months. (In fact it was less of a
rootkit and more a collection of hacking tools.) The package
contained a script and three binaries. The script displayed
some messages, including user information and passwords.
It added a new user to the system, turned off the firewall,
and attempted to terminate the LittleSnitch process (a
program that tells the user when a program is attempting to
send information to the Internet). It downloaded and
installed the rest of the package, started a backdoor, created
a screen dump, and deleted its temporary file.

The first binary was a ‘backdoor’ for the xinetd program. It
simply ran xinetd with a custom configuration file that
caused xinetd to listen on port 31337 (‘eleet’, surprise!), and
return a command-shell with root privileges on connection.
The second binary was the well-known netcat program, a
very useful tool for doing all kinds of network-related
things. The third binary was a Unix log-file cleaner. There
was no active stealth technology at all in the package.

CONCLUSION
There’s always one person who spoils it for everyone else.
The Macintosh community has been relatively unaffected
by recent malware, at least when compared to the Windows
community, but perhaps that is set to change after all.

OSX/Weapox
Size: 27,608 bytes

Type: Rootkit

Payload: None

Removal: kextunload, then delete the files.

